
Jonathan Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

CS 4530
Software Engineering
Lecture 8 - Testing

Zoom Mechanics

• Recording: This meeting is being recorded

• If you feel comfortable having your camera on, please do so! If not: a photo?

• I can see the zoom chat while lecturing, slack while you’re in breakout rooms

• If you have a question or comment, please either:

• “Raise hand” - I will call on you

• Write “Q: <my question>” in chat - I will answer 
 your question, and might mention your name and ask you 
 a follow-up to make sure your question is addressed

• Write “SQ: <my question>” in chat - I will answer 
 your question, and not mention your name or expect you to 
 respond verbally

Today’s Agenda

Administrative:

HW2 due tomorrow

HW3, Project pitch posted tomorrow

Today’s session:

Review: Testing

Activity: Testing the Transcript Server

Dijkstra’s Law
Pioneer of Software Engineering as a discipline

“Program testing can
be used to show the
presence of bugs, but
never to show their
absence”

Testing: Two Key Challenges

1.What inputs should I test?

2.For those scenarios: what outputs should I check?

Example: ZIP Code
What inputs should I test?

• Input: 
5-digit ZIP code

• Output: 
list of cities

• What are representative values to test?

(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)

Valid ZIP Codes
What inputs should I test?

• with 0 cities as output 
(0 is boundary value)

• with 1 city as output

• with many cities as output

Invalid ZIP Codes
What inputs should I test?

• empty input

• 1–4 characters 
(4 is boundary value)

• 6 characters 
(6 is boundary value)

• very long input

• no digits

• non-character data

What inputs should I test?
Two high level answers

• “Black box” input generation: consider specification, conduct boundary value
analysis

• “White box” input generation: look at code, figure out input values that will
exercise all branches in code

Automated Tests
Is this an effective test?

describe('Create student', () => {
 it('should return an ID', async () => {
 const createdStudent = await client.addStudent('Avery');
 expect(createdStudent.studentID).toBeGreaterThan(4);
 });
})

Automated Tests
Tests are only as good as their inputs and their assertions!

describe('Create student', () => {
 it('should return an ID', async () => {
 const createdStudent = await client.addStudent('Avery');
 expect(createdStudent.studentID).toBeGreaterThan(4);
 });
})

Test Oracle

Possible Test Oracles
What output should we expect for a given input?

• Human tester infers the right answer

• Simply not crashing is “right”

• Formal specification prescribes the right answer

Pseudo-Oracles
What if we don’t know what the output should be?

• Regression testing: expect same results on new versions of code

• Differential testing: compare multiple implementations

Pseudo-Oracles and Machine Learning
Testing self-driving cars

• Problem: ML application learns from
traffic images, determines how to
steer car safely

• How do we exhaustively generate
inputs?

• Approach: apply image
transformations to known cases

“DeepTest: Automated Testing of Deep-Neural-Network-driven Autonomous Cars,” Tian et al, ICSE 2018

What makes a good test?
The Beyoncé Rule

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

What makes a good test?
The Beyoncé Rule, applied

Makes changes
to code

Developer

Runs Tests

TeTest
Test

A
“Test is OK!”

Test
B

“Test failed!”
{

What makes a good test?
More than just coverage and oracles

• Tests should be hermetic: reduce flakiness

• Tests should be clear: improves debugging later on

• Tests should be scoped as small as possible: faster and more reliable

• Tests should make calls against public APIs

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

Integration Tests

Integration Tests
Individual unit correctness does not imply full system correctness

Google’s Ideal Software Testing Pyramid

Figures: “Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

Software Testing Anti-Pattern: Ice Cream Cone Testing

Integration vs Unit Testing
Well, how do you define “unit”?

1 class of one program
running on a web

server

1 process running on a
web server

Mork

UnitIntegration

Integration vs Unit Testing
Well, how do you define “unit”?

1 class of one program
running on a web

server

1 process running on a
web server

Mork

UnitIntegration

1 web server in a
cluster of 100,000

Integration vs Unit Testing
Well, how do you define “unit”?

1 class of one program
running on a web

server

1 process running on a
web server

Mork

UnitIntegration

1 web server in a
cluster of 100,000

1 Google product in
the entire Google

ecosystem

Integration vs Unit Testing
Consider not just scope, but size

1 class of one program
running on a web

server

1 process running on a
web server

Mork

UnitIntegration

1 web server in a
cluster of 100,000

1 Google product in
the entire Google

ecosystem

“Small”“Medium”

“Large”

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

How big is my test?
Considerations for test code at Google

• Small: run in a single thread, can’t sleep, perform I/O or making blocking calls

• Medium: run on single computer, can use processes/threads, perform I/O, but
only contact localhost

• Large: Everything else

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

What makes a good test?
More than just coverage and oracles

• Tests should be hermetic: reduce flakiness

• Tests should be clear: improves debugging later on

• Tests should be scoped as small as possible: faster and more reliable

• Tests should make calls against public APIs

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

Is this a good test?
Is it self-contained?

describe('Create student', () => {
 it('should return an ID', async () => {
 const createdStudent = await client.addStudent('Avery');
 expect(createdStudent.studentID).toBeGreaterThan(4);
 });
})

What makes a bad test?
Test smell: Test Code Duplication

Multiple test methods share the same code

“Refactoring Test Code,” van Deursen et al, XP2001

describe('hasMork', function () {
 it('Returns true if Mork is in crew', () => {
 let crew = [martianFactory("Mork"), martianFactory("Mal"), martianFactory("Zoe"), martianFactory("Jayne")];
 let ship = mothershipFactory("shipName", crew);
 assert.equal(hasMork(ship), true, "Ship with mork has mork");
 })
 it("Returns false if Mork is not in the crew", () => {
 let crew = [martianFactory("Mal"), martianFactory("Zoe"), martianFactory("Jayne")];
 let ship = mothershipFactory("shipName", crew);
 assert.equal(hasMork(ship), false);
 })
 it("Returns false if Mork is in a daughter ship", () => {
 let mork = martianFactory("Mork");
 let crew = [martianFactory("Mal"), martianFactory("Zoe"), martianFactory("Jayne")];
 let ship = mothershipFactory("shipName", crew, [mothershipFactory("shipName", [mork])]);
 assert.equal(hasMork(ship), false);
 })
})

What makes a bad test: Flaky Tests
Why do Google’s testing infrastructure team hate “Large” tests?

• How do we (reliably, repeatedly, cheaply) execute a test that:

• Changes some global variables?

• Changes the state of a database?

• Executes stock trades?

• Connects to remote servers?

Flaky Tests
An anti-pattern in testing

• Google: 16% of all automated tests are flaky

• Microsoft: 5% of Windows & Dynamics CRM tests are flaky

• Facebook: “Assume all tests are flaky”

• Most developers: flaky tests are a nuisance!

Flaky Tests
Test Order Dependencies

Test 1 Test 2 Test 3 Test 4Test 1 Test 2

Shared
File

Value: A
Write, Value “A”

Test 4

Read
Write, Value “B”

Value: B

Test 3

Read

“Efficient dependency detection for safe Java test acceleration”, Bell et al, FSE 2015

Flaky Tests
Test Order Dependencies

Test 1 Test 2 Test 3Test 4Test 1 Test 2 Test 3

Shared
File

Value: A
Write, Value “A”

Test 4

Write, Value “B”

Read, Expect Value “A”

Value: B

A flaky test: outcome of Test 3 changed, but the code hasn’t changed!

Read

“Efficient dependency detection for safe Java test acceleration”, Bell et al, FSE 2015

let myVar = 5;
describe('test with dependency', function() {
 before(() => {
 // runs once before the first test in this block
 myVar = 10;
 });

 it("is a terrible test", ()=>{
 //do lots of stuff
 myVar = 5;
 //do lots of stuff
 expect(myVar).to.be(5);
 });
 after(() => {
 // runs once after the last test in this block
 myVar = 10;
 });
});

Flaky Tests & Test Order Dependencies
Touch global variables or database?

Option 1 Option 2

Setup, teardown methods

Test 1

is a terrible test

Test 2

Isolate each test in a new process 
(or container)

Fast, but “compliance appliance” Slow, but “non-compliance appliance”

“Unit Test Virtualization with VMVM,” Bell and Kaiser, ICSE 2014

Flaky Tests & Test Order Dependencies
System tests at scale

• Relying on engineers to develop and maintain reliable setup/teardown results
in unreliable tests

• Without isolation, can’t run multiple tests concurrently

• Common solution: system tests run in entirely isolated environments

MySQL
Apache Tomcat

Ubuntu
Test (running in a newly provisioned VM)

Test

Flaky Tests & External Services
Specialized products replace external components with mocks

https://www.tradeweb.com/our-markets/data--reporting/replay-service/

Example: TradeWeb ReplayService™: a testing platform for financial market data applications

Originally a product of Thomson Reuters (data provider), then spun off to CodeStreet, then acquired by TradeWeb

https://www.tradeweb.com/our-markets/data--reporting/replay-service/

Flaky Tests Overall
A problem we’re stuck with?

• Reduce the scope of a test: small tests aren’t flaky

• Remove timed waits, increase timeouts: reduce flaky failures?

• Make tests more understandable: can you tell if a failure is flaky or not?

• Mitigate with reruns, but this increases test cost

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

Demo: Writing Tests

Activity: Testing the Transcript
Server

https://neu-se.github.io/CS4530-CS5500-Spring-2021/Activities/week5-prof-bell-transcript-server.zip

https://neu-se.github.io/CS4530-CS5500-Spring-2021/Activities/week5-prof-bell-transcript-server.zip

This work is licensed under a Creative Commons
Attribution-ShareAlike license

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• for any purpose, even commercially.

• Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

